
The Type to Take Out a Loan? A Study of
Developer Personality and Technical Debt

Lorenz Graf-Vlachy∗† and Stefan Wagner∗
∗Institute of Software Engineering, University of Stuttgart

Stuttgart, Germany
†TU Dortmund University

Dortmund, Germany
{lorenz.graf-vlachy|stefan.wagner}@iste.uni-stuttgart.de

Abstract—Background: Technical debt (TD) has been widely
discussed in software engineering research, and there is an emerg-
ing literature linking it to developer characteristics. However,
developer personality has not yet been studied in this context.
Aims and Method: We explore the relationship between various
personality traits (Five Factor Model, regulatory focus, and nar-
cissism) of developers and the introduction and removal of TD. To
this end, we complement an existing TD dataset with novel self-
report personality data gathered by surveying developers, and
analyze 2,145 commits from 19 developers. Results: We find that
conscientiousness, emotional stability, openness to experience,
and prevention focus are negatively associated with TD. There
were no significant results for extraversion, agreeableness, promo-
tion focus, or narcissism. Conclusions: We take our results as first
evidence that developer personality has a systematic influence on
the introduction and removal of TD. This has implications not
only for future research, which could, for example, study the
effects of personality on downstream consequences of TD like
defects, but also for software engineering practitioners who may,
for example, consider developer personality in staffing decisions.

Index Terms—Technical debt, personality, five factor model,
Big Five, regulatory focus, narcissism

I. INTRODUCTION

A. Technical Debt and its Consequences

Ever since Cunningham famously remarked that “Shipping
first time code is like going into debt” [1, p. 30], the notion of
“technical debt” (TD) has gained traction in practitioner circles
and academia alike [2]. Definitions of TD vary slightly, but
researchers have converged on the notion that TD is the result
of making technical compromises that give rise to a “collection
of design or implementation constructs that are expedient in
the short term, but set up a technical context that can make
future changes more costly or impossible.” Consequently, TD
“presents an actual or contingent liability” [3, p. 112].

While TD can be beneficial, especially in terms of devel-
oper velocity, the literature frequently discusses its potential
downsides [4]. One of the most frequently mentioned adverse
consequences of TD is its negative impact on developer
morale [5]. Developers generally dislike incurring TD [6],
and it has been found to be psychologically taxing [7]. This
leads to TD having demotivating effects [2]. Others have
widened the scope and considered other consequences like
reduced developer productivity due to reduced maintainability

of code, decreased code quality (leading to more defects and
subsequent costs), as well as increased uncertainty and risk [8].

B. Technical Debt as Risk-Taking to be Managed

In fact, to at least a substantial degree, the issue of TD can
be interpreted as a matter of risk-taking. Prior scholars have
clearly established, and it follows from the definition provided
above, that TD is about making trade-off decisions [3], [9]. For
one, such decisions about TD are a trade-off between saving
effort in the present and having to repay this principal with
interest in the future. Consequently, they constitute risk-taking,
since the implied interest rate can only become fully clear in
the future, which is uncertain and thus risky [10], [11]. For
another, however, the risky nature of TD is exacerbated by the
fact that not only is the interest amount unclear, but there is a
“possibility that debt may never need to be paid back” [12, p.
52] in the first place. Perhaps one of the most lucid discussions
of this issue can be found in Schmid’s work on the limits of
the TD metaphor, in which he distinguishes between “potential
technical debt”, which he explicitly characterizes as being
“akin to a risk”, and “effective technical debt” [10, p. 64],
which is the amount of TD that is actually relevant to the
future evolution of a software system (i.e., the part of it that
will actually require future remediation efforts, but which can
of course not be perfectly identified and anticipated).

Correspondingly, TD is often viewed as something that may
need to be paid down at some point, but that, ad minimum,
should be very consciously managed. At least two key strands
of literature exist in this context. First, researchers have
spent considerable effort on measuring, that is, assessing the
magnitude, of TD in a system. Researchers developed different
indicators, for instance, code smells [13]. Others developed
various tools to automatically measure TD, for example using
code metrics [14]. Several such tools, such as SonarQube,
provide composite quality indicators of maintainability, which
are particularly appreciated by junior developers [15]. Ulti-
mately, researchers unsurprisingly made considerable efforts
to estimate TD costs [4], [16].

Second, researchers have concerned themselves with iden-
tifying, prioritizing, and paying down TD. Digkas et al., for
instance, studied how technical debt is handled [17] and paid
back [18] in the Apache ecosystem. Nayebi et al. provide an



extensive longitudinal case study on how architectural TD is
identified and paid down in the context of a healthcare com-
munications product. Maipradit et al. recently developed an
automated classifier to identify self-admitted TD in code [19].
Going beyond such individual studies, Alves et al. provide an
overview of tools to identify and manage TD, including, for
example, cost-benefit analysis and portfolio approaches [13].
Closely related, recent reviews of the work on the prioritization
of TD (both against other TD or against new features) identi-
fied a set of strategies to prioritize and manage TD. Alfayez et
al., for example, identified 24 different strategies [20], whereas
Lenarduzzi et al. aggregate the strategies they identified into
four broader categories and one additional category of combi-
nation approaches [21].

C. Antecedents of Technical Debt

In the quest to best manage TD, researchers have also
explicitly begun to explore its causes and antecedents. Some
researchers have, for instance, identified factors such as firms’
business model innovation as a driver of TD [22]. Others
found, for example, the number of commits and the number
of lines of code (LOC) in a project to be positively related
to TD [23]. Yet another stream of research has focused
on describing which incentives and punishments companies
employ to motivate developers to avoid or pay down TD [24].
Overall, a myriad of factors appear to influence TD. Rios et
al., for example, performed a qualitative study and identified
57 factors that drive TD, with time pressure due to looming
deadlines ranking highest [25]. In a large survey, Rios et
al. later increased that number to 78 [26]. A multi-country
replication of this survey subsequently derived eight overar-
ching categories of antecedents of TD, and again identified
deadlines as the most important cause of TD [2]. Interestingly,
the perception among practitioners regarding the key causes
of TD changes with experience. More experienced software
developers focus less on technical issues as causes of TD, and
more on human factors [27].

As is thus perhaps to be expected, one specific stream of
research has begun to focus on individual developers to under-
stand the origins of TD. Amanatidis et al., for instance, studied
various PHP projects and found that individual developers
differ substantially with regard to the amounts of TD they
incur [28]. Alfayez et al. and Codabux and Dutchyn reaf-
firmed these findings in other codebases and went further in
explicitly profiling individual developers, identifying various
characteristics that are predictive of their actions regarding the
introduction and removal of TD [29], [30].

However, thus far, we are not aware of any research that
links developers’ personality to TD. This is surprising because
it is a core tenet of psychological research that personal-
ity is strongly predictive of a wide variety of individuals’
behaviors [31] and one might therefore expect it to also
have a bearing on whether a given developer is more or
less willing to incur or pay back TD, which in turn may
have important consequences, for example, for staffing project
teams. Consequently, in this study, we ask the following

research question: How is developer personality related to
introducing and removing TD?

II. BACKGROUND AND HYPOTHESES

In this paper, we study several different aspects of devel-
oper personality and their relationship with technical debt.
Specifically, we consider the personality traits covered by the
Five Factor Model, regulatory focus, and narcissism. Below,
we lay out the theoretical background of each, provide an
overview over its prior use in software engineering research,
and develop hypotheses regarding how each trait might be
related to changes in technical debt.

A. Five Factor Model Personality Traits

The Five Factor Model (FFM; sometimes also referred to
as the “Big Five”) is arguably the most established person-
ality trait model in psychology [32]–[34]. It was developed
using a psycholexical approach and comprises five broad
traits—extraversion, agreeableness, conscientiousness, emo-
tional stability (or its inverse, neuroticism), and openness to
experience—that are rather stable across different situations.
The traits are universal in that empirical evidence shows that
they are equally valid for different sexes, races, cultures, and
age groups [35].

The FFM has been used extensively in software engineering
research. The following is thus only an illustrative treatment of
more recent works.1 Rastogi and Nagappan [38], for instance,
studied the FFM personality traits of GitHub contributors.
They found that developers who contributed more scored
higher on openness to experience, conscientiousness, and ex-
traversion, but lower on emotional stability and agreeableness.
However, Calefato et al. [37] later repeated this study with an
improved personality measure and found no such effects.

Karimi et al. [39] studied the relationship between person-
ality and programming style and performance (including code
quality) in student programmers. They found that openness
to experience was positively associated with a breadth-first
programming style and conscientiousness was positively asso-
ciated with a depth-first style. They did not explicitly link FFM
traits to programming performance, but found that a breadth-
first programming style is linked to superior performance.

Paruma-Pabón et al. [40] captured developer FFM person-
ality, as well as developers’ needs and values, from software
project mailing list emails, and clustered developers with simi-
lar personality types. They demonstrated that the personality of
developers with commit privileges was linked to their behavior
within the projects.

Relatedly, Calefato et al. [37] studied the personality of
Apache developers using the FFM and found that there were
three common types of personality profiles. Neuroticism and
agreeableness were the two traits most important for differ-
entiating the profiles from one another. They also found that
FFM traits did not vary by developer role, membership, or
degree of contribution to their project, and they demonstrated

1Several recent journal articles provide fairly extensive reviews of the use
of the FFM in software engineering research [36], [37].



that developer personality was time-invariant. Further, they
found a positive association between developers’ openness to
experience and the likelihood of making project contributions.

Finally, Iyer et al. [36] examined the acceptance of pull
requests in open-source projects. They found that pull requests
from authors who score higher in openness and conscientious-
ness were more likely to be approved. They further found that
extraversion was negatively related to the chance of approval.
In addition, they found that pull requests which are closed
by programmers who score higher on conscientiousness and
extraversion had a greater chance of acceptance. Emotional
stability of the closer, in contrast, was linked to a reduced
likelihood of acceptance.

In the following, we will link each FFM personality trait
in software developers to induced TD. First, extraversion
indicates the degree of engagement with the external world.
Sub-facets of extraversion include friendliness, gregariousness,
assertiveness, activity, and excitement-seeking. Extraverted
persons can thus be described as outgoing, often feeling
positive emotions, and seeking stimulating activities. In com-
parison, introverted persons can be described as less outgoing,
shy, and preferring to spend time alone [32], [33], [41]. Since
more extraverted developers are more prone to activity and
excitement-seeking, we propose that they “move fast and break
things”, leaving behind more TD than introverted developers.
Extant literature further suggests that extraversion is positively
related to risk-taking [42]. Given that prior qualitative software
engineering research argued that “having a higher risk appetite
can influence decisions to create technical debt” [8, p. 1504],
this further indicates that extraversion and TD might be
positively connected. Formally put:

Hypothesis 1 (H1): Extraversion will be positively associ-
ated with induced TD.

Agreeableness refers to the degree of concern with cooper-
ation and social harmony. Sub-facets of agreeableness include
trust, morality, altruism, cooperation, modesty, and sympathy.
Agreeable persons can be described as friendly, helpful, and
understanding. In comparison, non-agreeable persons can be
described as less friendly, not very cooperative, and initiating
disagreements [32], [33], [41]. Therefore, we expect more
agreeable developers to wish to support others in improving
code, thus paying down TD instead of adding to it. The
literature on risk-taking also suggests that agreeableness is
linked to less risk-taking [42]. We therefore conjecture:

Hypothesis 2 (H2): Agreeableness will be negatively asso-
ciated with induced TD.

Conscientiousness indicates the degree of control over hu-
man impulses. Sub-facets of conscientiousness include or-
derliness, reliability, achievement-striving, and self-discipline.
Thus, conscientious people can be described as prudent, orga-
nized, and reliable. In comparison, non-conscientious people
can be described as impulsive, unsystematic, and less reli-
able [32], [33], [41]. Consequently, we expect more consci-
entious developers to dislike TD, and to induce little of it,
or even remove it. The psychological literature on risk-taking
takes a similar stance and finds an overall negative relationship

between conscientiousness and risk-taking [42]. We posit:
Hypothesis 3 (H3): Conscientiousness will be negatively

associated with induced TD.
Emotional stability is often described through its inverse,

neuroticism. Neuroticism indicates the degree to which a per-
son experiences negative feelings. Sub-facets of neuroticism
include anxiety, anger, depression, self-consciousness, and
vulnerability. Neurotic people can be described as tense, often
in a bad mood, and emotional. In comparison, emotionally
stable people can be described as calm and free from a
persistent bad mood [32], [33], [41]. Neurotic individuals
tend to act decisively to remedy the anxiety they are prone
to experiencing in uncertain situations [43] and to minimize
potential threats that may materialize, even if this means
accepting some concrete negative outcomes [44]. In other
words, they frequently resort to a “better safe than sorry
strategy” [45, p. 1005] in uncertain situations. As discussed
above, choices on TD are always made under uncertainty and
involve trading off today’s gains for potential future liabili-
ties [11], suggesting that neuroticism may lead to choices that
avoid uncertainty by avoiding TD. The psychological literature
further discusses a potential link between neuroticism and
self-oriented perfectionism [46], which may lead programmers
to write whatever they perceive to be “better” code, which
may well be code with less TD. Again, the literature on risk-
taking concurs with this idea and shows positive links between
emotional stability and risk-taking [42]. We thus hypothesize:

Hypothesis 4 (H4): Emotional stability will be positively
associated with induced TD.

Openness to experience describes the degree to which indi-
viduals are imaginative and creative. Sub-facets of openness
include imagination, artistic interest, adventurousness, liberal-
ism, and intellect. Persons high in openness can be described
as individualistic, non-conforming, and aware of their feelings.
In contrast, persons low in openness can be described as down-
to-earth, conventional, and less aware of their feelings [32],
[33], [41]. Consequently, we propose that developers higher
in openness to experience will feel less bound to ideas of
writing supposedly “clean” code, and are thus more likely to
induce TD. Furthermore, prior literature has linked openness
to experience with increased risk-taking [42]. We thus propose:

Hypothesis 5 (H5): Openness will be positively associated
with induced TD.

B. Regulatory Focus

Despite the comprehensiveness of the FFM, it is common in
the psychology literature to study it in conjunction with other
traits [47]. We thus also study regulatory focus, an established
construct in personality psychology that has not yet found
any attention in software engineering research. A person’s
regulatory focus consists of two independent self-regulatory
orientations, or foci, that shape their goal-striving behavior:
Prevention focus and promotion focus [48], [49].2 Promotion

2Note that regulatory focus can be conceptualized as a state and a trait. As
is also often done in the psychological literature, we only focus on the latter
component, sometimes also referred to as “chronic” regulatory focus [48].



focus is related to being eager, risky, and oriented towards
attaining gains as positive outcomes. In contrast, prevention
focus is related to being careful, cautious, and oriented toward
avoiding losses as negative outcomes. Given that incurring TD
constitutes risk-taking, and in line with literature that links
regulatory focus to risk-taking [50], we thus propose that more
promotion-focused developers may be more likely to induce
TD, and more prevention-focused developers less so.

Hypothesis 6 (H6): Promotion focus will be positively
associated with induced TD.

Hypothesis 7 (H7): Prevention focus will be negatively
associated with induced TD.

C. Narcissism

Although there is an ongoing debate about the precise
definition of the construct [51], scholars broadly agree that
narcissism is a personality trait that combines “a grandiose yet
fragile sense of self and entitlement as well as a preoccupation
with success and demands for admiration” [52, pp. 440–441].
While various blog posts about narcissistic software developers
suggest that narcissism may be a topic of interest in software
engineering practice, we are not aware of any extant scientific
work that explicitly studies this personality trait in software
engineers. Prior research in psychology, in contrast, is plentiful
and has found that narcissism is related to a host of correlates,
for example status-seeking [53], having little regard for others’
concerns, and viewing others as inferior [54].

A particularly prominent correlate of narcissism is risk-
taking. Specifically, researchers have found associations of
narcissism with a host of risky activities. These include,
for instance, risky sexual behavior and sexual aggression,
aggressive driving, drug and alcohol use, compulsive exercise,
and gambling [55]. Given the nature of incurring technical debt
as inherently risk-taking, we propose that more narcissistic
developers are likely to induce more TD in their commits.

Hypothesis 8 (H8): Narcissism will be positively associated
with induced TD.

III. METHOD

A. Technical Debt Measures

To measure technical debt, we relied on the “Technical
Debt Dataset” in version 2 [56]. This dataset contains a
comprehensive analysis of the master branches of 29 Apache
open source projects using the popular tool SonarQube, and
has been used in prior research [30].

Our primary measure of induced TD in a focal commit fol-
lows prior work in relying on the estimated remediation effort
for all maintainability issues as identified by SonarQube [29].
Specifically, the value for the focal commit is the difference in
remediation effort estimates between the focal commit and its
parent commit. Positive values thus indicate increases in tech-
nical debt, and negative values indicate technical debt being
paid down. In a secondary, broader measure of induced TD
we additionally include the estimated remediation effort for
all reliability and security issues as identified by SonarQube.

Because ratios are potentially problematic as dependent
variables [57], we deviate from prior work [29] and do not
divide the TD measures by the difference in lines of code
(LOC) between focal and parent commit. Instead, and arguably
more precisely, we control separately for the LOC added and
the LOC removed in the focal commit. This accounts for the
fact that more LOC may make technical debt more likely [29].

B. Survey Measures

To obtain personality data, we surveyed the developers who
made at least one commit in the Technical Debt Dataset.
As the dataset itself does not contain contact information of
developers, the first step was to obtain information on all
commits of the projects from GitHub using PyDriller [58].
This yielded 99,972 commits, which partially extended beyond
the timeframe of the dataset. We identified all individuals listed
as “authors” in the data, and manually cleaned the list to
remove duplicates. We also merged records where individuals
used different names but the same email address, or different
email addresses but the same or an extremely similar name
for different commits. When judgment was needed, we made
decisions as conservatively as possible. We ultimately obtained
a list of 1,555 unique individuals. In case of multiple email
addresses per person, we selected only one, preferring personal
email addresses over professional ones because the person’s
commits to the projects were partially already quite old and
the person might have moved organizations since.

We sent an email to all 1,555 developers to invite them to
our survey [59] (which was part of a larger data collection
effort for multiple studies). We sent the invitation with a
personalized link to the survey. In the email, we pledged to
donate US$ 2 per completed response to the United Nations
World Food Programme [60]. We also sent two reminders [59],
including one that linked to an official university web page
confirming the authenticity of the survey as some developers
were concerned that the invitation might be a scam.

Because 165 emails bounced, we reached 1,390 developers
(89.4% deliverable emails), of which 194 developers started
the survey, and 124 completed it. We dropped all respondents
that provided implausible values for their age (≤10 or ≥100),
leaving us with a preliminary sample of 121 developers. Al-
though this number may seem low, it is of a similar magnitude
as the total number even from studies that assessed personality
not based on self-reports but on mining vast corpora of emails.
Calefato et al., for instance, used about 1.35 million emails
from 46,304 developers but only obtained full personality
profiles for 211 of them (<0.5%), of which only 118 had
made source code commits [37]. Our response rate was 8.9%,
which is similar to that of other studies surveying developers
on GitHub. Graziotin et al., for instance, report a 7% response
rate [61]. Their reported share of deliverable emails is 96.6%,
which is also similar to ours.

The first page of the survey provided participants with
basic information about what kind of data would be collected.
We assured the developers that their data would be treated
completely confidentially and not be shared with other parties.



We highlighted that participation was voluntary and that devel-
opers could abort the survey at any point. We further explicitly
clarified that the developers consented to participating in our
study by proceeding to the next page. We pretested the survey
with three doctoral students of software engineering and made
minor modifications based on their feedback.

To capture respondents’ FFM personality traits, we em-
ployed the widely used Ten-Item Personality Measure
(TIPI) [41]. Since the TIPI is designed to capture all facets
of the Big Five with content and criterion validity with
one item each, reliability measures like Cronbach’s α are
uninformative [62]. We consequently do not report them.

To measure regulatory focus, we employed six items (three
each for promotion and prevention focus) from the exten-
sively validated Regulatory Focus Composite Scale (RF-
COMP) [63]. To test for internal consistency, we performed
a factor analysis on all ten items of the RF-COMP in our
sample. It indicated more than the two expected distinct
factors. As is commonly done in such cases, we therefore
reduced the number of items until two clear factors emerged—
one capturing promotion and one capturing prevention focus.
We then obtained a Cronbach’s α of .66 for promotion focus
and .60 for prevention focus. Given the low number of items
per construct, these constitute acceptable values [64].

We measured narcissism using the short version of the
Narcissistic Personality Inventory (NPI-16) [52]. Cronbach’s α
was .70, constituting an acceptable value [65] and even being
slightly higher than that obtained in the work that developed
the measure in the first place [52].

As we measure personality after the analyzed commits were
made, this might potentially raise concerns about an unclear
direction of causality in our analysis. However, this is unlikely
to be a problem as personality is widely considered as stable
across adult life [66], [67] and the sampled developers were
all between 24 and 65 years of age. In line with this, recent
research specifically on the personality of developers has not
found any evidence of variation over time [37].

To measure developers’ age at the time of each commit, we
asked developers to simply provide their age in years. We then
subtracted the difference between 2022 and the year in which
the focal commit was made from the provided age.

C. Final Sample

We only retained normal commits, dropping merge and
orphan commits because the former do not allow a calculation
of induced TD (due to multiple parent commits) and the latter
may have particular characteristics. Note that including orphan
commits does not change our results.

Since our TD measures require a completed SonarQube
analysis for the focal and the parent commit, and there was
substantial missing data in the Technical Debt Dataset, our
sample was ultimately reduced to N = 2,145 commits from
19 developers for which we had both full TD and personality
data. While our sample is thus not large by any means, it is
not too far from, for example, the sample of 28 individuals
in the study of Calefato and Lanubile on personality and trust

between Apache developers [68] and much larger than Rigby
and Hassan’s sample of four programmers in their study on
the FFM traits of highly productive Apache developers [69].

D. Analysis Strategy

We ran panel regressions to study the association between
our personality and TD measures. This method is suitable in
situations in which a panel unit (the developer in our case) is
observed repeatedly. We clustered standard errors at the panel
unit to account for the fact that multiple commits from the
same developer are not statistically independent. We included
control variables for developer age at time of commit and
LOC added and LOC removed in our models. In addition,
we include dummy variables (fixed effects) for each project
in our analyses. These variables capture all time-invariant
aspects that are specific to a project, for example certain coding
conventions.

E. Replication Package

Unfortunately, we cannot make the data for our analyses
available to other researchers because we explicitly promised
our respondents full confidentiality. Even if this were different,
we would be hesitant to share the data because we could not
do it anonymously given that the entire purpose of this paper is
to link personality to individually identifiable contributions to
software projects. The Technical Debt Dataset itself, however,
is publicly available [56]. We also provide a package of all our
analysis scripts.3 This package also contains a dummy data file
with the precise wording of the used survey measures.

IV. RESULTS

A. Descriptive Statistics

Table I provides descriptive statistics for the final dataset.
Figure 1 shows a histogram and kernel density plot of the
number of commits per developer in the sample.

TABLE I
DESCRIPTIVE STATISTICS

Mean SD Min. Max.

Induced TD 65.41 1,059.15 -14,160.00 32,880.00
Induced TD (broad) 67.92 1,091.94 -14,320.00 33,829.00
Extraversion 3.57 1.36 1.00 6.00
Agreeableness 4.18 1.10 2.50 6.00
Conscientiousness 5.82 1.11 3.50 7.00
Emotional stability 4.83 1.06 1.50 6.50
Openness to
experience 4.82 1.25 3.00 7.00

Promotion focus 15.30 2.39 10.00 21.00
Prevention focus 13.13 3.52 9.00 18.00
Narcissism 3.66 2.14 0.00 9.00
Age at commit 36.48 6.88 23.00 50.00
LOC added 217.63 1,565.86 0.00 40,180.00
LOC removed 81.12 732.66 0.00 25,886.00

Table II shows the correlation between all variables except
for the project dummy variables. It is apparent that the two

3Available at: https://dx.doi.org/10.6084/m9.figshare.21802968



Fig. 1. Histogram and Kernel Density Plot of Commits per Developer

measures of TD are almost perfectly correlated and thus tap
into essentially the same construct. Unsurprisingly, there is
also a strong correlation between induced TD and LOC added.

It is well-documented and thus not surprising that FFM
traits and narcissism share correlations [70]. In our sample
we replicate, for instance, the positive correlation between
narcissism and extraversion and the negative correlation be-
tween narcissism and agreeableness that have been widely
reported in the psychological literature [70]. As we expected
from regulatory focus measurements in other populations,
promotion and prevention focus are correlated positively and
significantly with each other [49].

B. Findings

Table III reports the regression coefficients and standard
errors of our panel regression analyses, once with the primary
measure of induced TD and once with the secondary, broader
measure of induced TD as the dependent variable. As is
evident from the table, the results are similar across both
dependent variables. Specifically, the coefficients for extraver-
sion and agreeableness are negative and not significant. These
results thus do not lend support to H1 and H2. The coefficient
for conscientiousness is negative and significant, supporting
H3. Counter to our hypotheses, the coefficients for both
emotional stability and openness to experience are significant
but negative. These findings consequently constitute evidence
against H4 and H5. The results regarding regulatory focus are
mixed. The coefficient for promotion focus is unexpectedly
negative but not significant. The coefficient for prevention
focus is negative as expected, and significant. These results
thus do not support H6 but corroborate H7. Finally, the
coefficient for narcissism is positive but not significant, lending
no support to H8.

While there is substantial disagreement in the literature
regarding whether corrections for multiple testing are nec-
essary and whether and when they help the interpretation
of results [71]–[73] (especially in the context of multiple
regression), we attempted to control the false discovery rate

by computing adjusted p-values (sharpened q-values) [74] for
all eight independent variables of interest. The results reaffirm
our original findings.

The coefficients of our unhypothesized control variables
are significant and with unsurprising signs. Developer age
at the time of the commit was negatively associated with
induced TD. LOC added and LOC removed were positively
and negatively associated with induced TD, respectively.

V. DISCUSSION

A. Unexpected results

While some hypotheses were simply not supported by in-
significant results in our regression analyses, some significant
results went directly counter to our hypotheses and therefore
warrant further discussion. First, emotional stability was sig-
nificantly negatively related to TD. A possible explanation—
in line with psychological research linking positive affect to
enhanced problem solving and decision making, as well as
flexible, innovative, thorough, and efficient cognitive process-
ing [75]—would be that more emotionally stable developers’
generally positive mood allows them to find superior ways to
produce highly maintainable code, inducing less TD.

Second, openness to experience was negatively related to
TD. One plausible explanation would be that individuals
high in openness possess a specific aesthetic sensitivity [34],
which might find an expression in the creation of particularly
beautiful code, which in turn may include little TD. An
alternative explanation would be that such individuals are
highly creative [34] and may thus simply find good ways of
expressing logic in code without creating TD in the first place.

B. Threats to validity

There are several potential issues that may threaten the
validity of our study. We treat them along four categories [76].

1) Construct validity: One may challenge the accuracy of
our measurements. This holds true for both the independent
and the dependent variables. When it comes to the personality
measures, we resorted to using short scales. While this is
likely to have contributed to a higher response rate in our
survey, these measures may have introduced more measure-
ment error than longer scales would have [77]. Additionally,
our personality measures are based on self-reports. Although
such measures are the most trusted and most frequently used
in psychology, they are potentially not problem-free [78].
For instance, respondents may seek to present themselves in
the best possible light rather than wholly accurately. Com-
bined with limited response rates among software engineer
populations, this has made researchers look to other data
sources. For instance, it has recently become fashionable to
infer personality from text corpora [36]–[38], [40], but such
methods are at least as problematic as self reports. For one,
recent work demonstrated that using psycholinguistic methods
to capture personality from developer communication (e.g.,
mailing lists) can result in substantial inaccuracies [79] and
different linguistic tools may lead researchers to very different
conclusions [80]. For another, most such work has only



TABLE II
CORRELATIONS

Induced
TD

Induced
TD

(broad)

Extra-
version

Agree-
able-
ness

Consci-
entious-

ness

Emo-
tional
stabi-
lity

Open-
ness to
expe-
rience

Pro-
motion
focus

Pre-
vention
focus

Narcis-
sism

Age
at

commit

LOC
added

Induced TD
(broad) 1.00∗∗∗

Extraversion 0.02 0.02
Agreeableness 0.02 0.02 -0.30∗∗∗
Conscien-
tiousness -0.04∗ -0.04∗ -0.27∗∗∗ -0.55∗∗∗

Emotional
stability -0.02 -0.02 -0.31∗∗∗ 0.12∗∗∗ 0.26∗∗∗

Openness to
experience 0.04 0.04 0.42∗∗∗ 0.13∗∗∗ -0.41∗∗∗ -0.58∗∗∗

Promotion
focus -0.04∗ -0.04∗ -0.20∗∗∗ 0.29∗∗∗ -0.03 -0.13∗∗∗ -0.15∗∗∗

Prevention
focus -0.02 -0.02 0.15∗∗∗ 0.30∗∗∗ -0.43∗∗∗ -0.72∗∗∗ 0.46∗∗∗ 0.57∗∗∗

Narcissism -0.02 -0.02 0.45∗∗∗ -0.30∗∗∗ 0.00 -0.00 -0.06∗∗ -0.46∗∗∗ -0.18∗∗∗
Age at commit 0.02 0.02 -0.46∗∗∗ 0.39∗∗∗ -0.33∗∗∗ 0.20∗∗∗ -0.41∗∗∗ 0.02 -0.11∗∗∗ -0.19∗∗∗
LOC added 0.73∗∗∗ 0.73∗∗∗ -0.01 0.04 -0.05∗ -0.02 0.07∗∗∗ -0.05∗ -0.01 -0.04∗ 0.04
LOC removed -0.13∗∗∗ -0.13∗∗∗ -0.01 0.03 -0.03 0.01 0.03 -0.01 -0.01 -0.01 -0.01 0.39∗∗∗
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Dummy variables for projects not shown. N = 2,145.

studied the FFM personality traits and corresponding linguistic
methods are not readily available for other personality traits.

Despite the fact that “few findings in psychology are more
robust than the stability of personality” [67, p. 175], this notion
has been challenged in some software engineering research,
suggesting that contributors evolve as more conscientious,
more extrovert and less agreeable over the years of participa-
tion [38]. While the effect sizes in this research are tiny [37],
this potentially affects the validity of our personality measures.

Further, the TD estimates from SonarQube are not perfect
and can likely be improved upon [81]. In fact, there are likely
limits to automated detection of TD in general. Certainly,
source code analysis tools cannot capture all types of technical
debt that prior research has identified [8], [13], [82]. Relatedly,
different technical debt detection tools frequently come to
different assessments of technical debt [83]. It would thus be
interesting to repeat our analysis with different measures of
technical debt from other tools.

2) Internal validity: There are various ways in which the
internal validity of our study might be limited. First, developer
personality may not be the only driver of TD, and not all other
relevant variables might be controlled for. This could lead to
missing variable problems and hence to spurious findings in
our regression analyses.

Second, our results might be affected by selection effects.
Since not all authors in the studied software projects have
commit privileges, the commits that were made and that we
can consequently observe may differ systematically from all
proposed code changes. For instance, as others have shown, the
personalities of committers influence their behavior, too [36],
[40]. Consequently, our data may be filtered in particular ways,
and our analyses and findings might thus be distorted.

3) External validity: Naturally, a key question in software
engineering studies on data from software repositories relates
to how generalizable any findings are to other contexts. At
least two potential threats to validity exist in this regard.

First, in light of recent discussions about the representa-
tiveness of samples [59], [60], we highlight that our sample
is likely not representative of all software developers. In
particular, we only sample open source contributors from
relatively large Apache projects written largely in Java, and
we achieved only a limited response rate in our survey.

Second, the Technical Debt Dataset exhibited substantial
missing data. In particular, the SonarQube analyses were
incomplete for many commits. Since our measure of TD
requires completed analyses for not only each focal commit
but also its parent commit, we experienced a lot of missing
values in our dependent variables. Whether this data is missing
at random remains unclear.

4) Reliability: The reliability of our research should be
high. All scales we used to assess personality are established in
the psychological literature [59]. There was very little human
judgment needed in our research process. Where judgment
calls were necessary, we documented the guiding principles
in this article. We also provide all scripts used for data
analysis. Consequently, our research should be, in principle,
fully replicable. Given that confidentiality assurances to the
surveyed developers prevent us from sharing the personality
data, other researchers are of course not able to directly repeat
our analyses. However, we deem the latter issue not a threat
to the validity of our research.

C. Implications for Research

Our study has several implications for future research. First
and foremost, it demonstrates that developer personality has



TABLE III
PANEL REGRESSIONS

Induced
TD

Induced
TD (broad)

Extraversion -34.80 -36.55
(45.98) (48.32)

Agreeableness -0.93 -1.91
(25.17) (26.32)

Conscientiousness -185.20∗∗ -191.80∗∗

(60.77) (63.85)

Emotional stability -178.47∗∗∗ -183.47∗∗∗

(21.78) (22.74)

Openness to experience -189.82∗∗∗ -192.61∗∗∗

(43.50) (45.14)

Promotion focus -31.66 -31.41
(28.94) (30.36)

Prevention focus -44.31∗∗∗ -45.70∗∗∗

(7.09) (7.44)

Narcissism 19.77 22.23
(20.67) (21.52)

Age at commit -17.77∗ -17.94∗

(7.51) (7.78)

LOC added 0.62∗∗∗ 0.64∗∗∗

(0.14) (0.14)

LOC removed -0.71∗∗∗ -0.73∗∗∗

(0.14) (0.14)

Constant 4500.48∗∗∗ 4596.41∗∗∗

(1152.82) (1203.54)

Project fixed effects Yes Yes
Observations 2,145 2,145
Clusters 19 19
Dependent variable indicated in top row.
Table reports coefficients, clustered standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

a meaningful impact on TD. We thus propose further study
in this direction. In particular, we encourage replications of
our study in other code bases and potentially with other TD
measures, e.g., self-admitted technical debt. Further, studying
other types of TD that may not be captured by the measures we
used may be informative [8], [13], [82]. Moreover, potential
consequences of TD like software defects or project budget
overruns might also be linked to personality and warrant
further study. Second, our research shows that personality traits
beyond the FFM may be relevant to explain and predict the
behavior of software developers. Although only prevention
focus proved to be significant in our study, we suggest that
regulatory focus in general and possibly even narcissism
should be further studied with regard to software engineering
decisions beyond the issue of TD. Finally, future research
may consider the addition and the removal of TD as two
distinct activities. We thus propose analyses of commits with
net increases and commits with net decreases in TD [29] to see
if they may potentially have different personality antecedents.

D. Implications for Practice

Our study suggests that developers with certain personal-
ity profiles might be more or less prone to incurring TD.
This leads to important practical implications. First, project
managers (who often know their teams well and do not
need to administer potentially legally problematic personality
surveys) might staff software development projects with this
in mind. For instance, they might purposefully opt to assign
project artifacts that already have too much TD to developers
with a personality profile that likely leads to reduced TD,
for example, developers high in prevention focus or consci-
entiousness. Similarly, they may change team composition
between project phases. Following Beck’s 3X model, it is
for example conceivable that the “explore” phase allows for
developers producing more TD, whereas “expand” calls for
more careful developers, and the “extract” phase may be best
handled by developers averse to TD [84]. Second, managers
may allocate more time and resources to closely tracking
TD in artifacts developed by programmers with a personality
profile that is conducive to TD. Third, when using techniques
like pair programming, project managers may wish to make
personality a criterion in establishing pairs. For example, it
may be desirable to have pairs of programmers that have
complementary personality profiles to actively manage TD in
a project. Finally, our research may allow developers them-
selves to become more aware of their innate tendencies. All
personality measures used in this study are generally available
and could be used in training programs in which developers
have an opportunity to assess their personality and learn about
the potential implications for their behaviors regarding TD.

VI. CONCLUSION

In conclusion, it seems that developer personality influences
the creation and removal of TD. We hope our research sparks
further inquiries into this intriguing issue.

ACKNOWLEDGMENT

We would like to acknowledge helpful information on the
Technical Debt Dataset from Davide Taibi.

REFERENCES

[1] W. Cunningham, “The wycash portfolio mangement system,” in Adden-
dum to the Proceedings of OOPSLA 1992, 1992, pp. 29–30.

[2] R. Ramač, V. Mandić, N. Taušan, N. Rios, S. Freire, B. Pérez, C. Castel-
lanos, D. Correal, A. Pacheco, G. Lopez, C. Izurieta, C. Seaman, and
R. Spinola, “Prevalence, common causes and effects of technical debt:
Results from a family of surveys with the it industry,” Journal of Systems
and Software, vol. 184, p. 111114, 2022.

[3] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing tech-
nical debt in software engineering (dagstuhl seminar 16162),” Dagstuhl
Reports, vol. 6, no. 4, pp. 110–138, 2016.

[4] T. Besker, A. Martini, and J. Bosch, “The pricey bill of technical debt:
When and by whom will it be paid?” in ICSME 2017, I. I. C. o. S. M. a.
Evolution, Ed. Piscataway, NJ: IEEE, 2017, pp. 13–23.

[5] H. Ghanbari, T. Besker, A. Martini, and J. Bosch, “Looking for peace of
mind? manage your (technical) debt: An exploratory field study,” in 2017
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 2017, pp. 384–393.

[6] T. Besker, H. Ghanbari, A. Martini, and J. Bosch, “The influence of
technical debt on software developer morale,” Journal of Systems and
Software, vol. 167, p. 110586, 2020.



[7] J. Olsson, E. Risfelt, T. Besker, A. Martini, and R. Torkar, “Measuring
affective states from technical debt,” Empirical Software Engineering,
vol. 26, no. 5, 2021.

[8] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
Journal of Systems and Software, vol. 86, no. 6, pp. 1498–1516, 2013.

[9] F. Shull, “Perfectionists in a world of finite resources,” IEEE Software,
vol. 28, no. 2, pp. 4–6, 2011.

[10] K. Schmid, “On the limits of the technical debt metaphor some guidance
on going beyond,” in 2013 4th International Workshop on Managing
Technical Debt (MTD 2013), P. Kruchten, Ed. Piscataway, NJ: IEEE,
2013, pp. 63–66.

[11] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt:
Towards a crisper definition,” ACM SIGSOFT Software Engineering
Notes, vol. 38, no. 5, pp. 51–54, 2013.

[12] E. Allman, “Managing technical debt,” Communications of the ACM,
vol. 55, no. 5, pp. 50–55, 2012.

[13] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spı́nola, F. Shull,
and C. Seaman, “Identification and management of technical debt:
A systematic mapping study,” Information and Software Technology,
vol. 70, pp. 100–121, 2016.

[14] P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. Arcelli Fontana, T. Besker,
A. Chatzigeorgiou, V. Lenarduzzi, A. Martini, A. Moschou, I. Pigazzini,
N. Saarimaki, D. D. Sas, S. S. de Toledo, and A. A. Tsintzira, “An
overview and comparison of technical debt measurement tools,” IEEE
Software, vol. 38, no. 3, pp. 61–71, 2021.

[15] F. Gilson, M. Morales-Trujillo, and M. Mathews, “How junior de-
velopers deal with their technical debt?” in Proceedings of the 3rd
International Conference on Technical Debt, ser. ACM Digital Library,
C. Izurieta, Ed. New York, NY, United States: Association for
Computing Machinery, 2020, pp. 51–61.

[16] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal of an
application’s technical debt,” IEEE Software, vol. 29, no. 6, pp. 34–42,
2012.

[17] G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolu-
tion of technical debt in the apache ecosystem,” in Software architecture,
ser. LNCS Sublibrary: SL2 - Programming and software engineering,
A. Lopes and R. de Lemos, Eds. Cham, Switzerland: Springer, 2017,
vol. 10475, pp. 51–66.

[18] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Am-
patzoglou, “How do developers fix issues and pay back technical debt
in the apache ecosystem?” in 25th IEEE International Conference on
Software Analysis, Evolution and Reengineering, E. IEEE International
Conference on Software Analysis and Reengineering, Eds. Piscataway,
NJ: IEEE, 2018, pp. 153–163.

[19] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait for it:
identifying “on-hold” self-admitted technical debt,” Empirical Software
Engineering, vol. 25, no. 5, pp. 3770–3798, 2020.

[20] R. Alfayez, W. Alwehaibi, R. Winn, E. Venson, and B. Boehm, “A sys-
tematic literature review of technical debt prioritization,” in Proceedings
of the 3rd International Conference on Technical Debt, ser. ACM Digital
Library, C. Izurieta, Ed. New York, NY, United States: Association for
Computing Machinery, 2020, pp. 1–10.

[21] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. Arcelli Fontana, “A
systematic literature review on technical debt prioritization: Strategies,
processes, factors, and tools,” Journal of Systems and Software, vol. 171,
p. 110827, 2021.

[22] J. Yli-Huumo, T. Rissanen, A. Maglyas, K. Smolander, and L.-M.
Sainio, “The relationship between business model experimentation and
technical debt,” in Software business, ser. Lecture Notes in Business
Information Processing, J. M. Fernandes, R. J. Machado, and K. Wnuk,
Eds. New York NY: Springer Berlin Heidelberg, 2015, vol. 210, pp.
17–29.

[23] J. Bedi and K. Kaur, “Understanding factors affecting technical debt,”
International Journal of Information Technology, vol. 14, no. 2, pp.
1051–1060, 2022.

[24] T. Besker, A. Martini, and J. Bosch, “The use of incentives to promote
technical debt management,” Information and Software Technology, vol.
142, p. 106740, 2022.

[25] N. Rios, R. Oliveira Spinola, M. G. de Mendonca Neto, and C. Seaman,
“A study of factors that lead development teams to incur technical debt
in software projects,” in 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2018). Piscataway, NJ:
IEEE, 2018, pp. 429–436.

[26] N. Rios, R. O. Spı́nola, M. Mendonça, and C. Seaman, “The practition-
ers’ point of view on the concept of technical debt and its causes and
consequences: a design for a global family of industrial surveys and its
first results from brazil,” Empirical Software Engineering, vol. 25, no. 5,
pp. 3216–3287, 2020.

[27] S. Freire, N. Rios, B. Perez, C. Castellanos, D. Correal, R. Ramac,
V. Mandic, N. Tausan, G. Lopez, A. Pacheco, D. Falessi, M. Mendonca,
C. Izurieta, C. Seaman, and R. Spinola, “How experience impacts
practitioners’ perception of causes and effects of technical debt,” in 2021
IEEE/ACM 13th International Workshop on Cooperative and Human
Aspects of Software Engineering. Piscataway, NJ: IEEE, 2021, pp.
21–30.

[28] T. Amanatidis, A. Chatzigeorgiou, A. Ampatzoglou, and I. Stamelos,
“Who is producing more technical debt?” in Proceedings of the XP2017
Scientific Workshops, R. Tonelli, Ed. New York, NY, USA: ACM, 2017,
pp. 1–8.

[29] R. Alfayez, P. Behnamghader, K. Srisopha, and B. Boehm, “An ex-
ploratory study on the influence of developers in technical debt,” in
Proceedings of the 2018 International Conference on Technical Debt,
ser. ACM Conferences, R. L. Nord, Ed. New York, NY: ACM, 2018,
pp. 1–10.

[30] Z. Codabux and C. Dutchyn, “Profiling developers through the lens
of technical debt,” in Proceedings of the 14th ACM / IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM). New York, NY, USA: ACM, 2020, pp. 1–6.

[31] O. P. John and R. W. Robins, Eds., Handbook of personality: Theory
and research, 4th ed. New York: The Guilford Press, 2021.

[32] G. Matthews, I. J. Deary, and M. C. Whiteman, Personality traits,
2nd ed. Cambridge: Cambridge University Press, 2003.

[33] R. R. McCrae and O. P. John, “An introduction to the five-factor model
and its applications,” Journal of personality, vol. 60, no. 2, pp. 175–215,
1992.

[34] O. P. John, “History, measurement, and conceptual elaboration of
the big-five trait taxonomy: The paradigm matures,” in Handbook of
personality, O. P. John and R. W. Robins, Eds. New York: The Guilford
Press, 2021, pp. 35–82.

[35] C. M. Ching, A. T. Church, M. S. Katigbak, J. A. S. Reyes, J. Tanaka-
Matsumi, S. Takaoka, H. Zhang, J. Shen, R. M. Arias, B. C. Rincon,
and F. A. Ortiz, “The manifestation of traits in everyday behavior and
affect: A five-culture study,” Journal of Research in Personality, vol. 48,
pp. 1–16, 2014.

[36] R. N. Iyer, S. A. Yun, M. Nagappan, and J. Hoey, “Effects of personality
traits on pull request acceptance,” IEEE Transactions on Software
Engineering, vol. 47, no. 11, pp. 2632–2643, 2021.

[37] F. Calefato, F. Lanubile, and B. Vasilescu, “A large-scale, in-depth anal-
ysis of developers’ personalities in the apache ecosystem,” Information
and Software Technology, vol. 114, pp. 1–20, 2019.

[38] A. Rastogi and N. Nagappan, “On the personality traits of github
contributors,” in 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2016, pp. 77–86.

[39] Z. Karimi, A. Baraani-Dastjerdi, N. Ghasem-Aghaee, and S. Wagner,
“Links between the personalities, styles and performance in computer
programming,” Journal of Systems and Software, vol. 111, pp. 228–241,
2016.

[40] O. H. Paruma-Pabón, F. A. González, J. Aponte, J. E. Camargo, and
F. Restrepo-Calle, “Finding relationships between socio-technical as-
pects and personality traits by mining developer e-mails,” in Proceedings
of the 9th International Workshop on Cooperative and Human Aspects
of Software Engineering. New York, NY, USA: ACM, 2016, pp. 8–14.

[41] S. D. Gosling, P. J. Rentfrow, and W. B. Swann, “A very brief measure
of the big-five personality domains,” Journal of Research in Personality,
vol. 37, no. 6, pp. 504–528, 2003.

[42] N. Nicholson, E. Soane, M. Fenton-O’Creevy, and P. Willman, “Person-
ality and domain–specific risk taking,” Journal of Risk Research, vol. 8,
no. 2, pp. 157–176, 2005.

[43] T. A. Judge, J. B. Rodell, R. L. Klinger, L. S. Simon, and E. R. Crawford,
“Hierarchical representations of the five-factor model of personality in
predicting job performance: integrating three organizing frameworks
with two theoretical perspectives,” Journal of Applied Psychology,
vol. 98, no. 6, pp. 875–925, 2013.

[44] J. B. Hirsh and M. Inzlicht, “The devil you know: neuroticism predicts
neural response to uncertainty,” Psychological science, vol. 19, no. 10,
pp. 962–967, 2008.



[45] M. J. Lommen, I. M. Engelhard, and M. A. van den Hout, “Neuroticism
and avoidance of ambiguous stimuli: Better safe than sorry?” Personality
and Individual Differences, vol. 49, no. 8, pp. 1001–1006, 2010.

[46] G. L. Flett, P. L. Hewitt, and D. G. Dyck, “Self-oriented perfectionism,
neuroticism and anxiety,” Personality and Individual Differences, vol. 10,
no. 7, pp. 731–735, 1989.

[47] T. C. Marshall, K. Lefringhausen, and N. Ferenczi, “The big five, self-
esteem, and narcissism as predictors of the topics people write about in
facebook status updates,” Personality and Individual Differences, vol. 85,
pp. 35–40, 2015.

[48] E. T. Higgins, “Beyond pleasure and pain,” The American psychologist,
vol. 52, no. 12, pp. 1280–1300, 1997.

[49] K. Lanaj, C.-H. D. Chang, and R. E. Johnson, “Regulatory focus
and work-related outcomes: a review and meta-analysis,” Psychological
bulletin, vol. 138, no. 5, pp. 998–1034, 2012.

[50] M. R. Hamstra, J. W. Bolderdijk, and J. L. Veldstra, “Everyday risk
taking as a function of regulatory focus,” Journal of Research in
Personality, vol. 45, no. 1, pp. 134–137, 2011.

[51] M. B. Donnellan, R. A. Ackerman, and A. G. Wright, “Narcissism in
contemporary personality psychology,” in Handbook of personality, O. P.
John and R. W. Robins, Eds. New York: The Guilford Press, 2021,
pp. 625–641.

[52] D. R. Ames, P. Rose, and C. P. Anderson, “The npi-16 as a short measure
of narcissism,” Journal of Research in Personality, vol. 40, no. 4, pp.
440–450, 2006.

[53] V. Zeigler-Hill, G. A. McCabe, J. K. Vrabel, C. M. Raby, and S. Cronin,
“The narcissistic pursuit of status,” in Handbook of Trait Narcissism,
A. D. Hermann, A. B. Brunell, and J. D. Foster, Eds. Cham: Springer
International Publishing, 2018, pp. 299–306.

[54] C. C. Morf and F. Rhodewalt, “Unraveling the paradoxes of narcissism:
A dynamic self-regulatory processing model,” Psychological Inquiry,
vol. 12, no. 4, pp. 177–196, 2001.

[55] M. T. Buelow and A. B. Brunell, “Narcissism and involvement in risk-
taking behaviors,” in Handbook of Trait Narcissism, A. D. Hermann,
A. B. Brunell, and J. D. Foster, Eds. Cham: Springer International
Publishing, 2018, pp. 233–242.

[56] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “The technical debt dataset,”
in Proceedings of the Fifteenth International Conference on Predic-
tive Models and Data Analytics in Software Engineering, L. Minku,
F. Khomh, and J. Petrić, Eds. New York, NY, USA: ACM, 2019, pp.
2–11.

[57] S. T. Certo, J. R. Busenbark, M. Kalm, and J. A. LePine, “Divided
we fall: How ratios undermine research in strategic management,”
Organizational Research Methods, vol. 23, no. 2, pp. 211–237, 2020.

[58] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, G. T. Leavens,
A. Garcia, and C. S. Păsăreanu, Eds. New York, NY, USA: ACM,
2018, pp. 908–911.

[59] S. Wagner, D. Mendez, M. Felderer, D. Graziotin, and M. Kalinowski,
“Challenges in survey research,” in Contemporary Empirical Methods
in Software Engineering, M. Felderer and G. H. Travassos, Eds. Cham:
Springer International Publishing, 2020, pp. 93–125.

[60] S. Baltes and P. Ralph, “Sampling in software engineering research: a
critical review and guidelines,” Empirical Software Engineering, vol. 27,
no. 4, 2022.

[61] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “On
the unhappiness of software developers,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, E. Mendes, Ed. New York, NY: ACM, 2017, pp. 324–333.

[62] S. D. Gosling, “A note on alpha reliability and factor structure in the
tipi.” [Online]. Available: https://gosling.psy.utexas.edu/scales-weve-
developed/ten-item-personality-measure-tipi/a-note-on-alpha-reliability-
and-factor-structure-in-the-tipi/

[63] K. L. Haws, U. M. Dholakia, and W. O. Bearden, “An assessment
of chronic regulatory focus measures,” Journal of Marketing Research,
vol. 47, no. 5, pp. 967–982, 2010.

[64] J. M. Cortina, “What is coefficient alpha? an examination of theory and
applications,” Journal of Applied Psychology, vol. 78, no. 1, pp. 98–104,
1993.

[65] J. C. Nunnally, Psychometric theory, 2nd ed., ser. McGraw-Hill series
in psychology. New York and London: McGraw-Hill, 1978.

[66] P. T. Costa and R. R. McCrae, “Personality in adulthood: A six-
year longitudinal study of self-reports and spouse ratings on the neo
personality inventory,” Journal of personality and social psychology,
vol. 54, no. 5, pp. 853–863, 1988.

[67] R. R. McCrae and P. T. Costa, “The stability of personality: Observations
and evaluations,” Current Directions in Psychological Science, vol. 3,
no. 6, pp. 173–175, 1994.

[68] F. Calefato and F. Lanubile, “Establishing personal trust-based connec-
tions in distributed teams,” Internet Technology Letters, vol. 1, no. 4,
p. e6, 2018.

[69] P. C. Rigby and A. E. Hassan, “What can oss mailing lists tell us? a
preliminary psychometric text analysis of the apache developer mailing
list,” in Fourth International Workshop on Mining Software Repositories
(MSR’07:ICSE Workshops 2007). IEEE, 2007, p. 23.

[70] B. A. Visser, “Narcissism and the big five/hexaco models of personality,”
in Handbook of Trait Narcissism, A. D. Hermann, A. B. Brunell, and
J. D. Foster, Eds. Cham: Springer International Publishing, 2018, pp.
205–212.

[71] K. J. Rothman, “No adjustments are needed for multiple comparisons,”
Epidemiology, vol. 1, no. 1, pp. 43–46, 1990.

[72] R. Bender and S. Lange, “Adjusting for multiple testing–when and
how?” Journal of clinical epidemiology, vol. 54, no. 4, pp. 343–349,
2001.

[73] D. J. O’Keefe, “Colloquy: Should familywise alpha be adjusted?
against familywise alpha adjustment,” Human Communication Research,
vol. 29, no. 3, pp. 431–447, 2003.

[74] M. L. Anderson, “Multiple inference and gender differences in the
effects of early intervention: A reevaluation of the abecedarian, perry
preschool, and early training projects,” Journal of the American Statis-
tical Association, vol. 103, no. 484, pp. 1481–1495, 2008.

[75] A. M. Isen, “An influence of positive affect on decision making
in complex situations: Theoretical issues with practical implications,”
Journal of Consumer Psychology, vol. 11, no. 2, pp. 75–85, 2001.

[76] L. Gren, “Standards of validity and the validity of standards in behavioral
software engineering research,” in Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, M. Oivo, D. Méndez, and A. Mockus, Eds. New York, NY,
USA: ACM, 2018, pp. 1–4.

[77] F. L. Schmidt and J. E. Hunter, “Measurement error in psychological
research: Lessons from 26 research scenarios,” Psychological Methods,
vol. 1, no. 2, pp. 199–223, 1996.

[78] D. L. Paulhus and S. Vazire, “The self-report method,” in Handbook
of Research methods in Personality Psychology, R. W. Robins, R. C.
Fraley, and R. F. Krueger, Eds. New York, NY: Guilford Press, 2007,
pp. 224–239.

[79] F. C. van Mil, A. Rastogi, and A. Zaidman, “Promises and perils of
inferring personality on github,” in Proceedings of the 15th ACM /
IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), F. Lanubile, Ed. New York, NY, USA: ACM,
2021, pp. 1–11.

[80] F. Calefato and F. Lanubile, “Using personality detection tools for
software engineering research: How far can we go?” ACM Transactions
on Software Engineering and Methodology, vol. 31, no. 3, pp. 1–48,
2022.

[81] V. Lenarduzzi, A. Martini, D. Taibi, and D. A. Tamburri, “Towards
surgically-precise technical debt estimation: early results and research
roadmap,” in Proceedings of the 3rd ACM SIGSOFT International
Workshop on Machine Learning Techniques for Software Quality Eval-
uation - MaLTeSQuE 2019, F. A. Fontana, B. Walter, A. Ampatzoglou,
F. Palomba, G. Perrouin, M. Acher, M. Cordy, and X. Devroey, Eds.
New York, New York, USA: ACM Press, 2019, pp. 37–42.

[82] N. Rios, M. G. de Mendonça Neto, and R. O. Spı́nola, “A tertiary study
on technical debt: Types, management strategies, research trends, and
base information for practitioners,” Information and Software Technol-
ogy, vol. 102, pp. 117–145, 2018.

[83] J. Lefever, Y. Cai, H. Cervantes, R. Kazman, and H. Fang, “On
the lack of consensus among technical debt detection tools,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2021, pp. 121–
130.

[84] K. Beck, “The product development triathlon,” 2018. [Online]. Avail-
able: https://medium.com/@kentbeck 7670/the-product-development-
triathlon-6464e2763c46


